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Abstract An approximate three-dimensional elasticity solution is presented for an infinite. thick.
orthotropic as well as laminated circular cylindrical shell of revolution subjected to distributed pinch
load. The validity and the accuracy of the results of approximate solution has been established by
comparing it with the results of an exact three-dimensional elasticity solution for single and multi­
layered (hybrid) shell of revolution. Numerical results have bcen presented for cross-ply laminated
(0/90'0 and 90'0/90) infinite circular cylindrical shell of revolution subjected to axisymmetric band
and distributed pinch loads. These results have been compared with thc classical and first-order
shear deformation theories of Flugge and Donnell to assess the accuracy and limitations of the two­
dimensional shell theories. C 1997 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTlOI\

Shell structures are not only aesthetical in appearance but also very efficient from structural
point of view. With the advent of advanced fiber reinforced composite materials having
many attractive properties like high strength to weight and stiffness to weight ratios, good
corrosion and heat resistance and excellent fatigue strength, shells made of these materials
have been extensively used in aerospace, civiL chemicaL mechanical and marine industries.
In the literature, several approaches have been made to study the static and dynamic
response of composite shells. The approximate two-dimensional theories based on Kir­
chhoff-Love hypothesis of nondeformable normals or their refinements to include the
effects of shear deformation and normal strain, initially proposed for isotropic shells have
been extended to composite shells. In order to assess the accuracy and limitations of
these two-dimensional (2D) shell theories, three-dimensional (3D) elasticity solutions are
essential as they can be used as bench mark solutions. Recently Noor and Burton (1990)
have systematically reviewed the available approaches and solutions based on 3D elasticity
and 2D shell theories for the analysis of multilayered composite shells. Though in practice
composite angle-ply/cross-ply laminated shells subjected to arbitrary loading are used,
their governing 3D elasticity equations are very complicated and there are considerable
mathematical difficulties in solving them. However, for a cross-ply laminate the basic
governing equations of 3D elasticity ( for shell problems) are a set of three, second-order
partial differential equations with variable coefficients in terms of three displacements in
the chosen cylindrical coordinate system and the solution of these equations is also quite
involved. Several approaches are proposed in the literature for reducing these partial
differential equations to ordinary differential equations with variable coefficient by assuming
some functions in two directions satisfying the boundary and symmetry conditions. Using
the displacement function approach the authors (Chandrashekhara & Rao, 1995) have
recently presented an exact 3D elasticity solution for an infinitely long. thick and trans­
versely isotropic circular cylindrical shell of revolution subjected to pinch load. However
this solution is applicable only for unidirectional hybrid laminates ( fibres oriented in the
longitudinal direction only as in the case of interlaminar hybrid laminate). This method
cannot be extended to more commonly used cross-ply laminated shells as the plane of
isotropy is different for 0 and 90 lamina and the same form of displacement functions
cannot be used for both the laminae. However many investigators in the past have attempted
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to develop solutions to these variable coefficient differential equations using power series
methods. The Frobenius method was first used by Srinivas (1974) for a simply-supported
cross-ply laminated circular cylindrical shells and some numerical results were presented
for free vibration problem. Later using the same approach numerical results for a simple
static loading has been given by Varadan and Bhaskar (1991) for cross-ply laminated
circular cylindrical shell of revolution. Recently Ren (1995) has used the power series
method for analysis of anisotropic laminated circular cylindrical shells under axisymmetric
loading. Even though the power series methods provide an exact solution, these methods
have convergence difficulties particularly while dealing with highly discontinuous loads. It
should be noted that this method has been employed by the above investigators to obtain
solution to problems with simple loading only. As an alternative, an approximate elasticity
solution under the assumption that h;/Ri « I (where h, and Ri are the thickness and middle
surface radius of the jth lamina) and can be neglected was suggested by Soong (1970) and
has been adopted by many investigators for static and free vibration analysis of composite
laminated shells. The above assumption helps in reducing the ordinary differential equations
with variable coefficient to one with constant coefficient, whose solution can be obtained
by using a standard procedure. Chandrashekhara and Kumar (1993a, b) have used the
above approach to obtain solution for finite laminated circular cylindrical shells subjected
to both axisymmetric and asymmetric radial loads. An infinite orthotropic laminated
cylindrical shell subjected to pinch load is a basic problem and to the authors knowledge
there appears to be no 3D elasticity solution for the same. The solution to this problem
would be specifically useful to study the local effects of highly discontinuous load on the
stresses and deformations of the shell. Further the present solution would serve as a bench
mark to verify the more general solutions based on other numerical methods. The main
objectives of the present paper are to (i) develop an approximate 3D elasticity solution for
long, thick, orthotropic and laminated circular cylindrical shell of revolution; (ii) establish
the validity of the approximate 3D elasticity approach with respect to exact 3D elasticity
solution developed earlier by the authors; (iii) assess the accuracy and limitations of 2D
classical and shear deformation theories of Flugge and Donnell.

2. BASIC GOVERNING EQUATIONS

The global (r, e,:) and local (f, e,:) coordinate system and the dimensions of the
laminated shell of revolution are as shown in Fig. I. The equilibrium equations in cylindrical
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Fig. I. Co-ordinate system and dimensions of laminated circular cylindrical shell of revolution.
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coordinates (r, 0, z) (Lekhnitskii, 1963) can now be rewritten in terms of local coordinates
(r, 0, z) by shifting the origin to the middle surface of the lamina (Fig. I) as.

( 1)

Similarly the strain-displacement relations (Lekhnitskii, 1963) can be rewritten in local
coordinates as.

(2)

where R j is the middle surface radius of the jth lamina and r is measured from the middle
surface of the lamina.

The stress-strain relations for an orthotropic lamina can be written as (Lekhnitskii,
1963)

(J,. C II C le C IJ 0 0 0 (;/

(J(I C le Cee Ce3 0 () 0 Co

(J. C I3 Cel C n 0 () 0 c.

0 0 0 C44 0 0
(3)

TOe :"0::

T r:: 0 0 0 () C" 0 /,.::

Tr/J 0 0 0 0 0 C 06 ~i'rO

In laminated composite shells commonly used in engineering applications, the thickness of
each lamina is very small when compared with its middle surface radius. The implication
of this assumption is that the ratio (rlR) « I and hence can be neglected. Hence we can
write

r = (R +f) = R(I + -'"'-) ~ R·· (e r = ?f1- 1 - R
1

- /' .
(4)

Using the above assumption (eqn (4)), the equilibrium equations in terms of displacements
can be obtained, by substituting eqns (2) and (3) in eqn (I) as,
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where,

X ,2

XI,l u

x" I'

Xn \j'

=0 (5)

(

[>2 1 C) Coo C I , (~2 I c: 2

X - C ~ +~ - - _::-= + -- +C,'~ +C - ~
I I - I I :> _, R ri- , , . 5 , , 60, ri8'

tT I tr Rj Rj cz" Rj () -

(

[.2 I? 2 ) I 62
?2

X" = C ~ + ~ - +Co, -- - + C ~
..:.- 66 ""1_" R '.-_-: -"J. --.., -.()! 44 -. .,

Cr- i(/ Rj Rjc7- cz-

Any general loading acting on the shell can be split into axisymmetric and asymmetric
(non-axisymmetric) parts. For the axisymmetric case the stresses, displacements and load
are independent of the circumferential coordinate (0) and further the shear strains (Yro, YeO),
shear stresses (Tro, L o) and circumferential displacement (r) does not exist. As a result of
the above simplifications the equilibrium equations for axisymmetric case will be two,
second-order partial differential equations in terms of displacements (u, w) and can be
written as,

(6)

The expressions for XII, X12 , X2 ), X22 , can be obtained from the expressions given earlier for
XI h Xl], X,I' X" by deleting the terms containing derivatives with respect to e, respectively.

3. BOUNDARY Al\D CONTIl\UITY CONDITIONS

For an infinite laminated circular cylindrical shell of revolution made of 'N' laminae
the boundary conditions on the inner and outer surface of the shell can be written as
(Fig. I)
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(J, = -q(:::, e), T,e = T,o = 0,

hi
aU = -­

2

h\
atl~=-

2
(7)

where hi and h N are the thickness of the innermost and outermost lamina of the shell.
Further the stresses and deformations should vanish as ::: ~x,

The continuity conditions of stresses and displacements to be enforced at any interface
can be written as,

[«(J')f~lt, Jj = [«(J')f~ It, ,21,+ 1

[(T,Jf~lt, 21, = [(T,,),~ II I 21,~ 1

[(U),~It, 21, = [(U)f II, I 2JI+ 1

[(1'),·~1t! JI = [(r)f~ It, I 2JI+ 1

[(W), eli, 21, = [(11'),,_ I" ,21,+ 1 (8)

where hi and h/+ 1 are the thickness ofjth and U+ I )th lamina.
For axisymmetric case only those stresses and displacements that exist need to be

considered and hence the boundary conditions for this case reduce to

U, = T" = 0, at ,~ =

U, = -q(:::),
h\

at F =
2

(9)

and continuity conditions in respect of 6" T", If and II need to be considered.

4, SOLLTION

The solution for axisymmetric and asymmetric (non-axisymmetric) cases has to
develop independently as in the present method, the solution for asymmetric (non-axi­
symmetric) case does not reduce to one for axisymmetric case automatically, Hence the
solution for the above two cases has been discussed separately,

4.1. Asymmetric case (non-axisymmetric)
The solution of the partial differential equations (eqn (5)) can be taken as,

i
f I

If = I U(F) cos(2nlJ) cos(i..::-) d;,
n 11'= I

r
'. r

r = I V(F) sin(2nlJ) cos(l.:::) d;.
..,0 11=1

i
f!

\1' = I W(F) cos(2nO) sin(i..::-) d/,
o J/=l

(10)

Substituting the expressions for u, l' and \I' in eqn (5), results in three second-order ordinary
differential equations in terms of radial coordinate (F).

Assuming that,
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[ U(i'), V(f), W(i')} = (U*. V*, W*) e" (11)

where U*, V* and w* are constants.
Substituting now eqns (10) and (11) in eqn (5) will result in a system of following three

algebraic equations.

[

lh' (,' +') +h.c.. }
{b 7 -b]s}

[-bss+b ll :

{b]s-b 4 }

[bg(sc + s) +h9 )

[bill }

(12)

The expressions for hi, h2, • .. , b1.1 are given in the Appendix. For nontrivial solution of the
above system of algebraic equations (eqn 12). the determinant of the coefficient matrix
should vanish, which results in the following polynomial equation.

As6 + Bs' + Cs4 + Ds3 + EsC +Fl' + G = 0 (13)

where the coefficients A-G depend on the stiffness constants (C), Fourier harmonic (n), I,
and the middle surface radius of the lamina under consideration. The six roots of the above
polynomial (eqn (13)) can be obtained by any standard numerical procedure. They can be
either all real or all complex or a combination of real and complex roots. The general
solution for U. Vand W can then be written down depending on the nature of these roots.

Case 1. If all the roots Sk (k = 1, ... ,6) are real, the solution can be written, as

"Uri') = I Uk (i')
k~1

(,

V(f) = I PkUdi')
k~1

6

W(f) = I Qk Udf)
k~l

(14)

where Uk(f) = ak e"r and ak (k = 1.2..... 6) are the unknown constants. The expressions
for Pk and Qk are given in the Appendix.

Case 2. If all the roots are complex, then

The solution can be written as

3

U(f) = I [adcos I"/kf) - ak+ 3 (sin I"/ki')] e'l'
k I

3

V(f) = I [adKkcosI"JJ-Mksinl"Jkf] -ak~1[MkCOSI"JIJ+KksinI"Jkf}]e"r
k~1

3

W(f) = I [adLkcosI"JJ-Nksinl1kf}-ak+3~NkcoSl"Jkf+Lksinl"Jkf}]e'" (15)
k~1

where ak (k = L 2, .... 6) are the unknown constants. The expressions for Kb L k. M k and
N k for complex conjugate roots are given in the Appendix.
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Case 3. If some roots are real and some are complex, the solution would be a com­
bination of case I and 2 discussed above. The expressions for stress components can be
obtained by using eqn (14) or eqn (15) (as the case may be), in egns (10), (2) and (3). For a
laminated shell consisting of 'N' lamina, there will be '6N' unknown constants, which can
be determined using three boundary conditions on each of the inner and outer surface of
the shell (eqn (7)) and continuity conditions (eqn (8)) at (N-I) interfaces. After evaluating
the constants the displacements and stresses can be computed by back substitution for each
lamina.

4.2. Axisymmetric case
The solution of the partial differential equations (eqn (6)) for axisymmetric case can

be taken as.

11 = rT

U(F) cos(i..::) di.
Jo

H' = rT

W(f) sin(i..::) di..
Jo

(16)

Substituting the above expressions for 11 and Ii' in eqn (6). results in two, second-order
ordinary differential equations in terms of radial coordinate (f). The solution for U(f) and
W(f) can be assumed in the following form.

[U(;"), W(f)} = (U*. W*) e" ( 17)

where U*, W* are constants. Substituting eqns (16) and (17) in eqn (6) will result in a
system of two algebraic equations.

lc I (..1'2 +..1')+ C l2 - C22 -CssVRy

- (Css +C 13 )i.R js- (C 21 + Cs,)i.R,

(18)

For non-trivial solution of the above system of equations (eqn 18) the determinant of the
coefficient matrix should vanish, which results in the following polynomial equation

( 19)

The general solution for 11 and II' can be obtained depending on the nature of the roots of
the above polynomial equation, similar to the asymmetric case discussed earlier. The stresses
and displacements can be computed after evaluating the unknown constants by making use
of surface boundary conditions and continuity conditions (eqn (9)) as explained earlier for
asymmetric case. The results for a general load (like for example pinch load) can be obtained
by superposing the results of the axisymmetric case over the corresponding results of the
asymmetric (non-axisymmetric) case.

5. NUMERICAL RESULTS AND DISCUSSION

A detailed numerical study has been made to establish the range of validity of the
present approximate 3D elasticity solution by comparing its results with the results of the
exact 3D elasticity solution proposed earlier by the authors (Chandrashekhara & Rao,
1995) for infinite single and hybrid laminated circular cyiindrical shell of revolution. Later
results are presented for cross-ply laminated shell of revolution for various shell thicknesses
with a view to assess and establish the range of applicability of two-dimensional shell
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theories. For the purpose of numerical results two materials, namely E-glass-epoxy (M 1)
and high modulus GRP (M2) have been considered. The properties of these materials are
as follows.

Ec Eo Grc GrO /lrO /lco
Material (GPa) (GPa) (GPa) (GPa)
E-Glass-epoxy [MI] 43.8 12.42 4.7 4.5 0.37 0.24
High modulus GRP [M2] 172.38 6.90 3.45 1.4 0.25 0.25

For a transversely isotropic material the shear modulus GrO is given by

E"G"I! = -- --.
2( 1+ Il ro )

Numerical results for the following problems are presented here:

(i) Infinite single-layer transversely isotropic circular cylindrical shell of revolution
made of material M2 with fibres in the longitudinal (z) direction subjected to (a) axi­
symmetric band load (c = c/R = 0.025) and (b) distributed pinch load.

(ii) Infinite transversely isotropic 3-ply hybrid laminated circular cylindrical shell of
revolution with fibres in the longitudinal (z) direction in all the three layers, but with
material M2 at top and bottom laminae and material M 1 for middle lamina with unequal
thickness plies, in the ratio of 1: 2: 3 from top to bottom subjected to (a) axisymmetric
band load and (b) distributed pinch load.

(iii) Infinite orthotropic cross-ply laminated circular cylindrical shell of revolution
made of material M2 (a) with fibres in the longitudinal (z) direction in top and bottom
plies and in transverse (8) direction in the middle ply (0/90/0) (b) with fibres in transverse
(8) direction in top and bottom plies and in the longitudinal (z) direction in the middle ply
(90;0;90), all plies of equal thickness (11 = H;3), subjected to axisymmetric band load
(c = c/ R = 0.025) and radial distributed pinch load.

5.1. npes oj load cOl1sidered

(a) Axisymmetric band load. The axisymmetric band load q(z) acting on the outer
surface (r = ROil) of the shell of revolution can be expressed as

q(z) = rr q(i.) cos(i.z) di.
• (J

where,

. (2q)(Sin i.c)q(;.) = ~ --.-.
n I.

(b) Distributed pinch load. The radial distributed pinch load q(z, &) acting on the outer
surface (r = RoJ of the shell of revolution (Fig. I) can be expressed as

I
x y

q(z, 0) = L q;o cos(2n&) cos(i.z) di.
u 11=0

where,
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q;n = (;2:1)Ci~),C) forn = 0 (axisymmetric) and

q;" = (:nCin2~mx)Ci~.;.c) for n ~ 0 (non-axisymmetric)

1335

where 2c and 2:1 are the linear and angular dimensions of the area over which the load is
acting. The dimensions of the radial load considered are c/ R = 0.025 and :1 = 1/8 radians
acting as shown in Fig. I.

The stresses and displacements presented in tables and figures are non-dimensionalized
as follows:

I
(a/h ae , frJ = -(ero, ere' rrJ

q

E
(u) = qR(U)

where E is taken as 10 GPa. In the figures, thickness coordinate is non-dimensionalized
with respect to outer radius (RaJ of the shell.

The infinite integrals for calculating displacements and stresses were evaluated numeri­
cally using five point interpolation formula [Zurmuhl (1965)) both for elasticity and shell
theory solutions. For elasticity solution convergence of infinite integrals and Fourier series
has been established by a detailed numerical study and it has been found that for the
distributed pinch load considered here good convergence can be obtained by considering
the upper limit of integration as 400 and number of terms (n) in the Fourier series upto 45.
For the case of axisymmetric band load good convergence can be obtained by considering
the upper limit of integration as 400.

In order to establish the range of validity of approximate solution with respect to exact
solution numerical results are presented in Tables I and 2 for an infinite single and hybrid

Table I. Comparative study of results of exact and approximate 3D analysis of single layer transversely isotropic
circular cylindrical shell of revolution of material M2 subjected to axisymmetric band load (c = 0.025) for various

shell thickness

HR
displacement 0.05 0.10 0.20 0.50
stresst exact approx. exact approx. exact approx. exact approx.
---_ .. _----- --_ .. _----- -----

-u(R.O,O) 2.13999 2.15204 0.83146 0.84687 0.34431 0.35517 0.12244 0.12617
aJR"u'O,O) -14.83103 -14.75919 -8.16968 -8.22468 -5.69818 -6.02648 -4.53576 -5.24641
a,(Ri"O,O) 12.93481 12.75873 5.03483 4.92099 1.92212 1.86144 0.61012 0.49960
- a,,( Rou ' 0, 0) 1.89639 1.90481 0.94016 0.95298 0.59258 0.60814 0.41332 0.46492
- a,,(Rm, O. 0) 1.42951 1.36339 0.58505 0.53609 0.26980 0.22483 0.12860 0.07855
'UR, 0, 0.025R) 0.50095 0.49921 0.20406 0.20086 0.068719 0.067538 0.015054 0.012335

Table 2. Comparative study of results of exact and approximate 3D analysis of hybrid laminated circular cylindrical
shell of revolution made of three laminae (M2. MI. M2) of unequal thickness (I: 2 : 3) subjected to axisymmetric

band load (c = 0.025) for various shell thickness

h,Rj(HR)
displacement 0.0253(0.05)* 0.0513(0.1)* 0.105(0.2)* 01917(0.35)*
stresst exact approx. exact approx. exact approx. exact approx.

---_ .•. _-----._---- ----_ .. ~ -------

-u(R.O.O) 1.82898 1.82766 0.71605 0.71439 0.29863 0.29722 0.15548 0.15429
a,(R"u' O. O) - 14.89178 -14.64548 - 7.74305 - 7.59253 - 5.55801 - 5.52760 -4.84534 -5.10086
aJRm.O,O) 11.84817 11.58130 4.65761 4.44525 1.83593 1.67569 0.87818 0.75546
- a,,(Rou• O. 0) 1.67578 1.64697 0.84868 082694 055353 053710 044875 0.44775
- al/(R i " O. 0) 1.21338 1.16615 0.49977 0.46147 0.23086 0.19740 0.13929 0.10673
f,(R. O. 0.025R) 0.56469 0.55834 0.25680 0.24710 0.09875 0.08716 0.04025 0.03098

*Values in the brackets are ratio of thickness of laminate (II) to the middle surface radius of the laminate (R).
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Table 3. Comparative study of results of exact and approximate 3D analysis for a single (M2) and hyhrid
laminated (M2, MI. M2) shell of revolution subjected to distributed pinch load (Fig. \).

Displacement/stress -u(RO,O) itJR"" 0, 0) it"(R,,,,,O, O)
----._----- --~-----_..-

Single shell Exact 05717 -6.1368 -0.7609
(HR = 0.2) Approx. 0.5776 - 5.6869 -0.7052

Hybrid laminate Exact 0.1573 - 5.0285 -0.4862
(HR = 0.35,h,/R, = 0.19) Approx. 0.1659 -4.87\6 - 0.4599

laminated shell of revolution for various shell thicknesses. In Table I comparison of exact
and approximate solution results for single layer transversely isotropic shell of revolution
made of material M2 and subjected to axisymmetric band load is presented. In all four
ratios of shell thickness to mean radius varying from 0.05 to 0.5 have been considered. It
can be observed from this table that the results of approximate solution are in good
agreement with the exact solution for Hi R upto 0.2 with a maximum percentage error of
5.76 in respect of longitudinal stress on the outer surface of shell directly under the load.
Hence it may be concluded that the present approximate solution can be extended for
analysis of thick laminated shell, provided the ratio of thickness to mean radius of each
lamina is ~ 0.2. It is pertinent to point out that with this limitation on ratio of thickness to
mean radius of the lamina, even very thick laminated shells can be analyzed using the
approximate solution. This could be seen from the results presented in Table 2 for hybrid
laminated shell of revolution that the approximate solution results are in good agreement
with exact solution even when Hi R = 0.35. In the above table hi and R , are the thickness
and mean radius of the innermost lamina. for which the ratio of thickness to mean radius
will be the highest. A detailed study. similar to the axisymmetric case, was made to establish
the limitation of the approximate solution for pinch load case and only some typical results
are presented here. In Table 3, a comparison of the results of exact and approximate 3D
analysis for single shell with H/ R = 0.2 made of material M2 and hybrid laminated shell
made of three laminae (M2, M I, M2) of unequal thickness (1: 2 : 3) with H/ R = 0.35
(hi/R I = 0.19) subjected to distributed pinch load are presented. It can be seen from
this table that the maximum error in approximate solution in respect of all stresses and
displacements is less than 10%.

To study the effect of shell thickness on the stresses and displacements, for cross-ply
laminates (0/90/0 and 90/0;90) three ratios of inner to outer radius of shell (R1n / ROll) namely,
0.9512. 0.9048 and 0.8182 (with corresponding thickness to mean radius ratios of the
laminate (H/ R) = 0.05, 0.1 and 0.2, respectively) have been considered.

Numerical results based on classical and first-order shear deformation shell theories
according to Flugge (CSTF and FSDTF) and Donnell (CSTD and FSDTD) have also
been obtained for cross-ply laminated shell. They are examined by comparing with the
present approximate elasticity solution to assess the accuracy and limitations of shell
theories. Figures 2-7 shows the variation of nondimensionalized radial displacement (u),
longitudinal (o-J and circumferential (0- 0 ) stresses and transverse shear stress (frel over the
thickness of the shell. The results obtained from approximate elasticity solution is indicated
in these figures as .ET'.

The variation of radial displacement over the shell thickness for shell of revolution
subjected to axisymmetric band and pinch loads for different Hi R ratios and lamination
schemes for a typical material M2 is presented in Figs 2 and 4, respectively. It may be seen
from these figures that the elasticity theory indicates the radial displacement to be constant
over the shell thickness for HI R = 0.05 while for H R ? 0.1 it is not constant for both the
lamination schemes considered in the present study. However, it can be seen that shell
theories always underpredict radial displacement for all HI R ratios and lamination schemes
considered here. For example the magnitude of radial displacement at middle surface of
laminate (90/0/90) as predicted by CST of Flugge and Donnell are 18% and 36% lower
than those obtained by approximate elasticity theory for H/ R = 0.05. while for HI R = 0.2
the error is 64% and 74%. respectively. Incorporation of first-order shear deformation in
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classical shell theories improves the prediction of radial displacement. For example for
H/R = 0.2, FSDT of Flugge and Donnell underpredict radial displacement to the extent of
14% and 35%, respectively. Further it can be seen from Fig. 2 that the difference between
elasticity solution results and classical shell theory results of Flugge is higher in the case of
a laminate having more of 0' laminae than 90 laminae for all the H/ R ratios considered.
The variation of longitudinal stress over the thickness of the shell for different thickness
and lamination schemes is shown in Figs 3 and 5. It can be seen from these figures that the
variation of longitudinal stress is almost linear for H/ R = 0.05 and 90/0/90 laminate, but
nonlinear for H/ R ~ 0.1. Further it can be observed that the shell theory results deviate
considerably from elasticity results for 0/90/0 laminate even for a thin shell (H/ R = 0.05).
It can also be seen that the magnitude of longitudinal stress is very small in 90 lamina
compared with a lamina. The variation of circumferential stress over the thickness of the
shell for different thickness and lamination schemes is shown in Fig. 6. It can be seen from
this figure that the variation of circumferential stress is almost linear for H/ R = 0.05, but
nonlinear for H/ R ~ 0.1. The magnitude ofcircumferential stress predicted by shell theories
at the interfaces of the laminate are considerably different from those predicted by the
present approximate 3D elasticity theory. This is because in shell theories the laminate is
taken as an equivalent orthotropic shell whereas in elasticity solution the properties of each
individual lamina is considered in the analysis. It can also be seen that the magnitude of
the circumferential stress is very small in 0 lamina compared with 90· lamina. The variation
of transverse shear stress over the shell thickness (elasticity solution only) for different
thickness ratios and lamination schemes at different sections in the longitudinal direction,
are shown in Fig. 7. It can be seen from this figure that at sections far away from the load
(z/ R ~ 0.1) the shear stress distribution is parabolic for thin (HI R = 0.05) laminated shells
(0/90/0). For thick (H/ R ~ 0.1) laminated shells (0/90/0) the distribution of shear stress is
not parabolic even at sections far away from the load V.iR ~ 0.1). In the case of (90;0/90)
laminated shell even though the shear stress distribution is not parabolic, the maximum
shear stress is at the middle surface of the shell unlike in (0/90/0) laminate where the
maximum shear stress occurs some where near the outer surface of the shell. Further it can
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be seen that shear stress distribution is far from parabolic at the point of discontinuity of
load (ziR = 0.025).

6. CONCLUSIONS

From the above discussion it can be concluded that the magnitude and variation of
displacement and stresses are affected by the shell thickness, lamination scheme and nature
of loading. The approximate 3D elasticity solution presented here predicts reasonably
accurate results (compared with exact solution for a single and layered transversely isotropic
shell) for HIR upto 0.2. From the results presented for hybrid laminated shell it may be
concluded that approximate solution can be used to analyse thick laminates, provided the
thickness to mean radius ratio of individual lamina is ~ 0.2. Comparison of results obtained
by shell theories with respect to approximate elasticity solution for cross-ply laminates
brings out the following points. The variation of longitudinal and circumferential stress
over the shell thickness is non-linear for thick shells (HIR ~ 0.1). The variation of radial
displacement over the shell thickness is constant for HIR = 0.05 and is not constant for
HI R ~ 0.1. All shell theories underpredict the radial displacement and classical shell theory
of Donnell gives unacceptable results even for a thin shell (HIR = 0.05). In general it may
be concluded that, incorporation of shear deformation over an accurate theory like Flugge
can give better results than on an approximate theory like Donnell. The present investigation
serves as a bench mark elasticity solution, which would be useful to verify the accuracy and
limitations of approximate 2D shell theories and the solutions based on other numerical
methods.
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APPENDIX A

hi = C II ;h, = C I,-C,,-C,,(i.Rj)'-(2n)'Coo ;b, =(C\,+Coo )2n

h4 = 2n(Cho -CI,+C,,);b, =(CI,+C"li.Rj;b, =(C\, -C"li.R,

b, = -2n(C,,+2C66 l;b k = C06 ;b" = -[2C",+(2n)'C,,+C4URy]

bill = -2n(C,,+C44 )i.R,;h il = -(C,,+Csli.Rj:b l , = c,.

b\ 1 = - [(2n)'C44 + C l ) (i,Ril'].
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For real roots:

k = 1,2, ... ,6.

For complex roots:

where

e, = (h,h, -h)b,)~, -(b;h,)(~f-ryf)-[hd~f-lif +~d+b,Jblll+h,h,

e4 = (h,b, -h,h,)'I, - 2b,h,~,'I, - [hi (2~,'I, ~'I, )]b lll

e, = [b l (~f -'If + U + h,][bd2~"1k + lid] + [hi (2,,11< + Ilcl][h,(~f - '11 + ,d +h4 ]­

(b,h) +b,b4 )114 +2b,~,ry,.
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